

Ensinar a sustentabilidade

Eng. Marco Cagelli

Eng. Luigi Paolino

Belo Horizonte, 31 de outubro de 2013

Teach the sustainability

Eng. Marco Cagelli

Eng. Luigi Paolino

Belo Horizonte, October 31th 2013

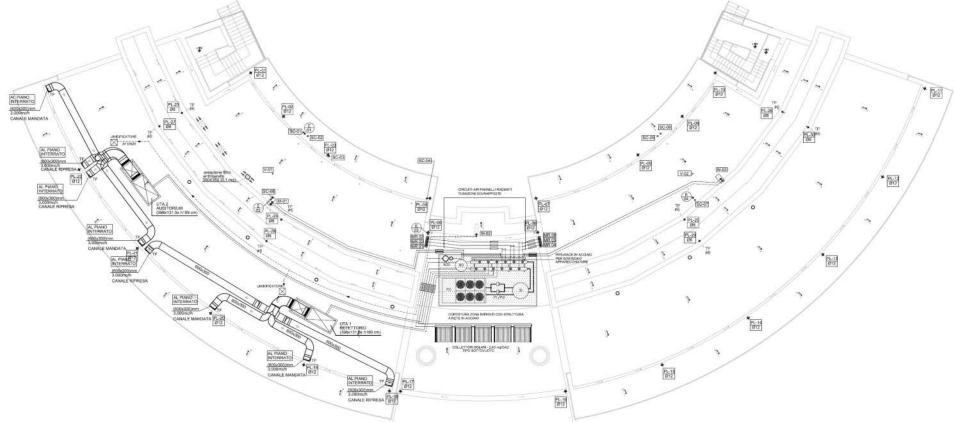
Water

LCA analisys – reduce footprint

Preference for traditional materials – teaching traditional work

Recycle materials – reduce footprint

School buildings: teach the sustainability

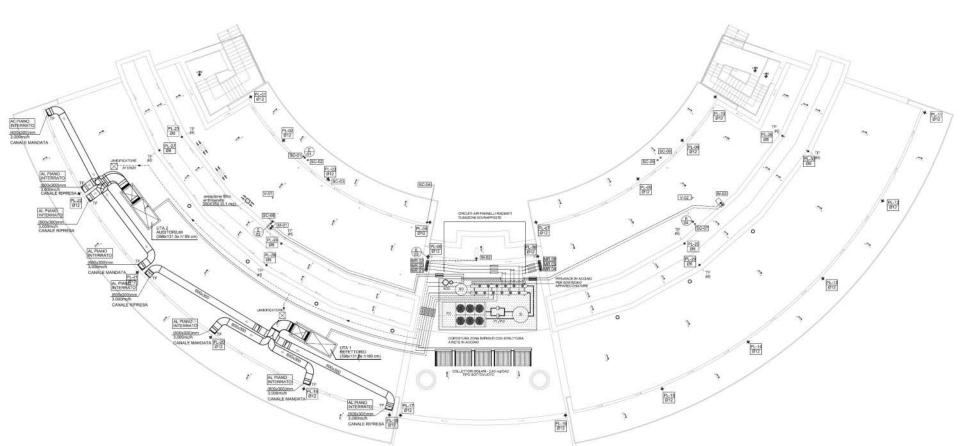

Fire protection

Bolano (SP)

Relationship with roof

Load on the top – seismic effects

School buildings: teach the sustainability


Mechanical plants

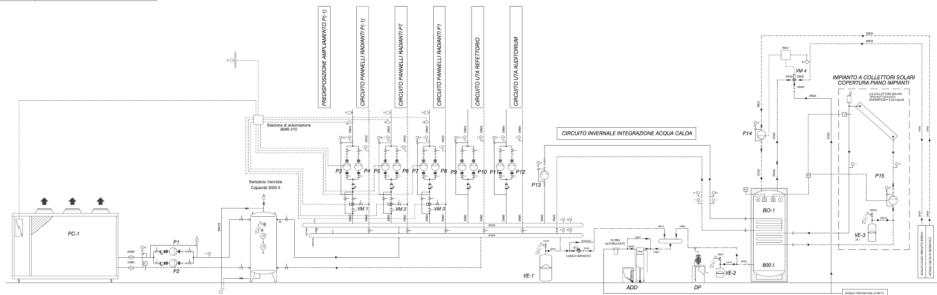
Bolano (SP)

Relationship with roof

Load on the top – seismic effects

School buildings: teach the sustainability Mechanical plants

Bolano (SP)


Solar panel for hot water


	LEGENDA							
N°	CIRCUITO	PORTATA	PREVALENZA	POTENZA ELETTRIC				
P1/2	PREMARSO POMPA CALORE	30 moh	Enca	1,5 Km				
P3/4	PANNELLI SEMINTERRATO	2,0 muh	7,5 m.s.a	0,18 No				
P5/6	PANNELLI TERRENO	8,0 muh	7,5 m,s,a	0,38 Kw				
P7/8	PANNELLI PRIMO PANIO	9.5 moh	2.6 max	0.36 Ker				
P9/10	UTA REFETTORIO	12 moh	7.5 mca	0.56 No				
P11/12	WILESTONA ATU	12 moh	7,5 mca	0,56 Nw				
P13	INTEGRAZIONE ACQUA CALDA	2,0 moh	65 maa	0.78 Nw				
P14	RECIRCOLO ACQUA CALGA.	2,0 muh	7,5 m.s.a	0,18 Kiw				
P15	QROUTO SOLANS							

LEGENDA			
8MBOLD DESCRIZIONE		SIMBOLO	DEBORIZIONE
PC-1	PC-1 Роман от сугове соисветендо на нам свим изо «свити им»		WALVOLA DENON RETORNO
BO-1	BO-1 EDUTORE SILARE DA MOI COMPLETO DI COMPAZIONE, DORPIO SERPENTINO E PESSITIDIDA ELETTRICA PER CICLO ANTILEGIONELLA - ECROW		GENTO ANTENBRANTE
ADD	ADDOLOTORE A COLONNA A SCAMBIO DI RESINE - DHILO moh	L _{oo} et	WALVOLA DI SICUREZZA
DP	DOSATORIE DI POLIFIOSFATI	3"	TERMOMETRO A GUAGRANTE
VE-1	VARO DE ESPAREIONE CIPCUTT DI RESCALDAMENTO - CAPACTIX 3001.	9-	NAMOMETRO COMPLETO DI RUBNETTO E RECCIOLO
VE-2	VASO DI ESPARSIONE CIPOUTTO SANITARIO	S.	VALVOLA A TIRE VIE MOTORIZZATA DI REGOLAZIONE
VE-3	VASO DI ESPARSIONE GROUTO SOLARE - CAPACITA' 951,	2	FLUSSOSTKTO
180 INI	VALVOLASARACINESICA		PANNELLO RICEVITORE REGICIATIONS
fier	VALVOLADI TARRITURA	9	SONDAND MISERSKINE

LCA analisys – reduce footprint

Preference for traditional materials – teaching traditional work

Recycle materials – reduce footprint

http://www.baubook.at/

http://www.matrec.it/it/

School buildings: teach the st Colors Relationship color-student Colors have effects on feeling, sensation,

Children use pour colors to express and communicate

ability, comprehension.

Colors change our sensation and feeling

colors change our sensation and reemi

Colors could help some activities

Colore	Effetto	Uso
Rosso	fa sembrare più piccolo il locale. Au- menta la frequenza cardiaca e stimo- la il respiro. Mantiene svegli e facilita il giudizio. Favorisce l'attività. È oppri- mente e stancante se denso e forte.	si può usare nelle zone di attività e nei corridoi; deve essere evitato nelle zone destinate al riposo e nel le zone di forte stress.
Arancione	stimola e favorisce la danza e i mo- vimenti. Favorisce l'allegria, la legge- rezza, l'informalità, il piacere.	adatto alle sale da pranzo, alle zone di ricevimento, ai corridoi. Va evitate nelle aree destinate al riposo o ag studi e nelle zone di forte stress.
Gaillo	favorisce il distacco, ma rende nervo- si e accelera il respiro. È adatto alle persone mature.	il giallo puro è un colore difficile da usare. È indicato soprattutto per la stanze utilizzate da una sola perso na. Va evitato nelle aree destinate al riposo o agli studi e nelle zona di lavoro
Verde	favorisce equilibrio e giudizio. Con- ferisce allo spazio un aspetto piatto, privo di vita e vuoto. Incoraggia l'inde- cisione, arresta il movimento e favori- sce l'inerzia.	è adatto a locali in cui occorre ur giudizio equilibrato; non è adatto alla maggior parte delle zone in cu si risiede a lungo e si svolgono at tività.
Turchese	fresco, rinfrescante, tranquillizzante e calmante; adatto alle persone troppo nervose.	si può usare nei luoghi di servizio igienico o nelle sale dove si consu mano i pasti o nelle aree destinate al riposo o alle attività di lettura, ma non nelle zone di attività motorie e ludiche di svago
Blu	calma, rilassa, distende e concilia il sonno. Aiuta a combattere la tensio- ne, le condizioni asmatiche, il nervo- sismo e l'insonnia.	è adatto nelle aree destinate al ri poso e nelle zone di forte stress; va evitato nelle sale da pranzo o nella zone di ricevimento
Viola	favorisce la determinazione, la pre- ghiera e la meditazione. Crea dignità e riverenza. Calma il corpo ed equili- bra la mente.	si impiega per creare un ambiento dignitoso: ingressi, luoghi di medi tazione, ma anche locali per cele brazioni e sale per conferenze
Magenta	il colore dell'appagamento spirituale. Genera letizia e un senso di comple- tezza e amor proprio	luoghi destinati al raccoglimento e al culto, ingressi e disimpegni, sale per conferenze. Andrebbe evitato nei locali usati per intrattenimento.
Bianco	esagera la purezza. Evoca una non esperienza. Potrebbe creare un effet- to di troppa durezza.	essendo un colore molto versatila nelle sue tonalità, andrebbe dosa to in modo da non richiedere una compensazione con arredi, quadri piante
Nero	accentua le reazioni emotive	non adatto come colore generale.

Colors

AR.IN. Studio - 2008

Users check

Surveillance

Always check function after the end

Research is not only for University

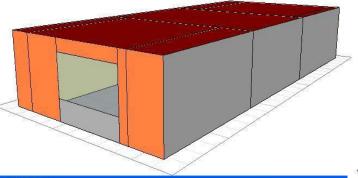
Understand what is changing

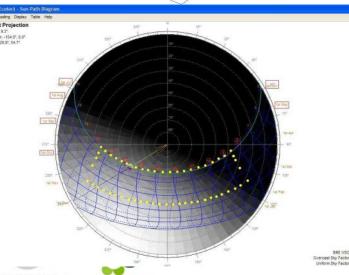
School buildings: teach the sustainability

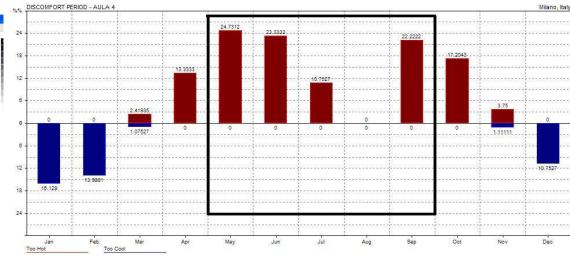
Shading - retrofit

Mediglia (MI)

South facade – internal overheating

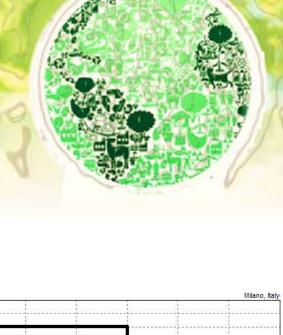


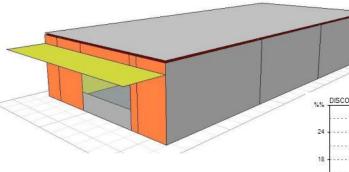

School buildings: teach the sustainability

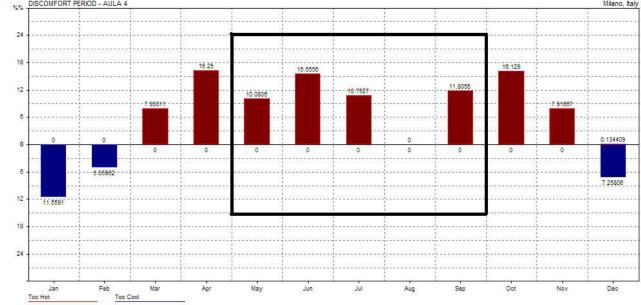

Shading - retrofit

Mediglia (MI)

Ecotect model – status quo




School buildings: teach the sustainability

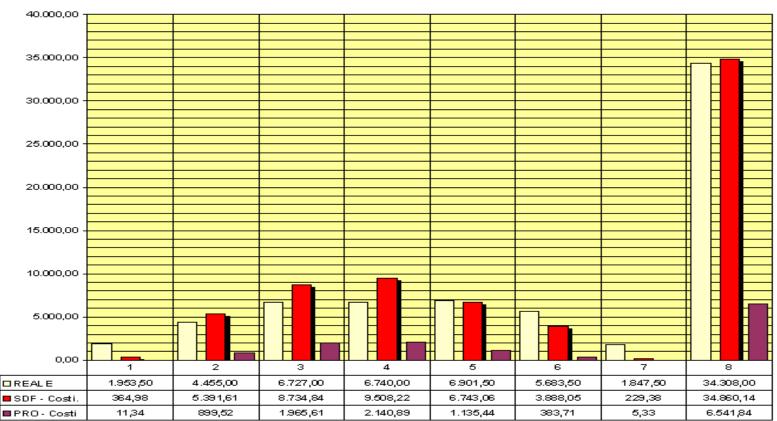

Shading - retrofit

Mediglia (MI)

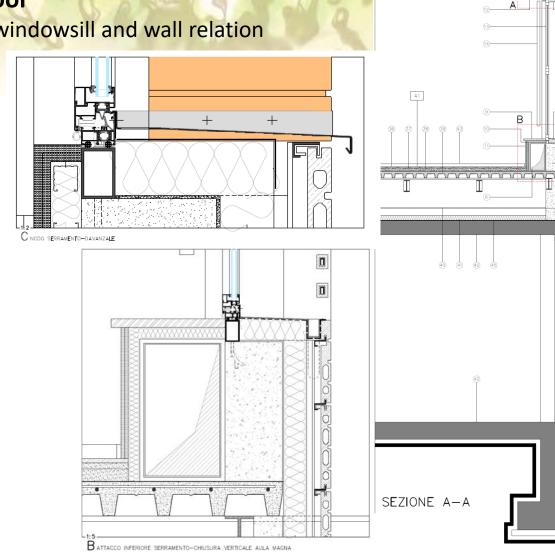
Ecotect model – design

Examples

Retrofit Ossona – Primary school


Status quo

Retrofit Ossona – Primary school Energy saving – cost for community!



Ossona - Primary school

Design section, detailed windowsill and wall relation

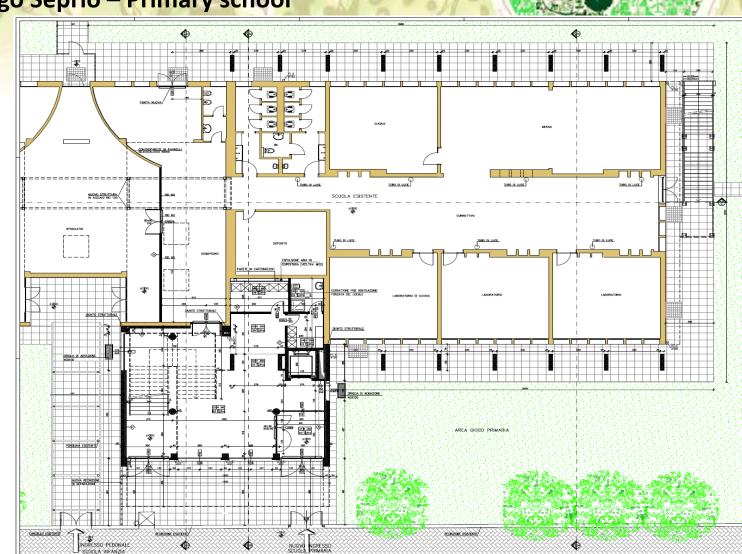
with heating system

Examples

Ossona – Primary school

Entrance - auditorium

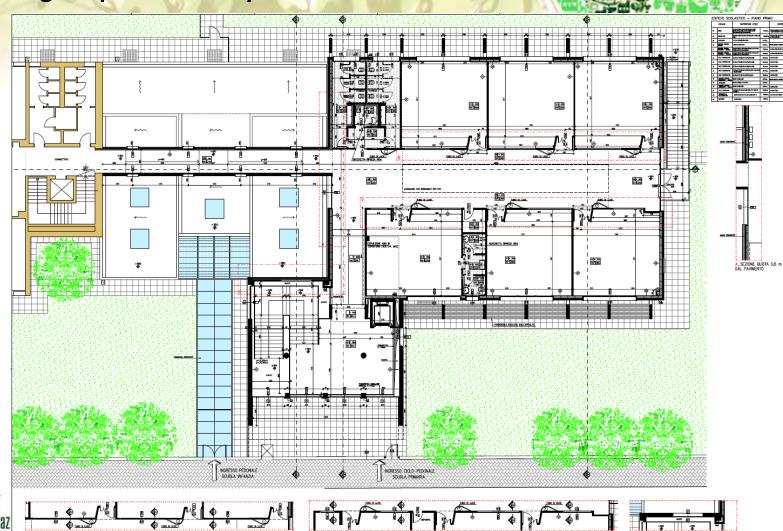
Auditorium – plasterboard and glulam



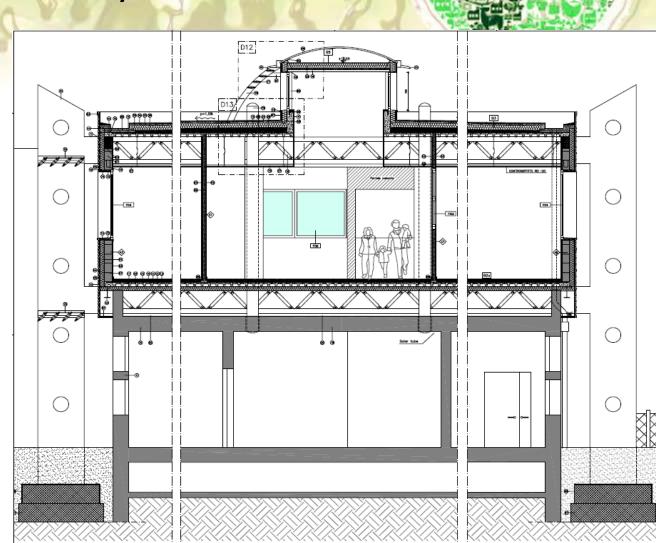
School buildings: teach the sustainability **Examples Enlargment – Arsago Seprio – Primary school** Entrance - rendering

Examples

Enlargment – Arsago Seprio – Primary school

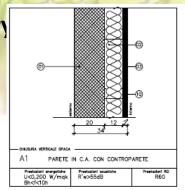

Ground Floor

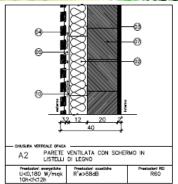
Enlargment – Arsago Seprio – Primary school

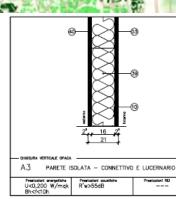

First Floor

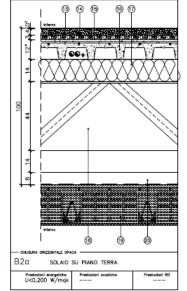
Enlargment – Arsago Seprio – Primary school

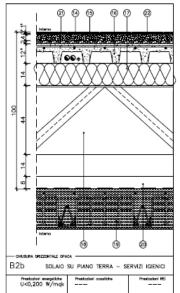
Cross section

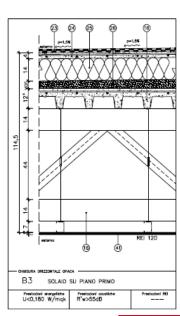


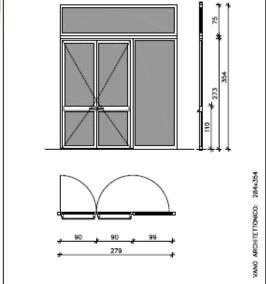





Enlargment – Arsago Seprio – Primary


Wall and floor performance abacus

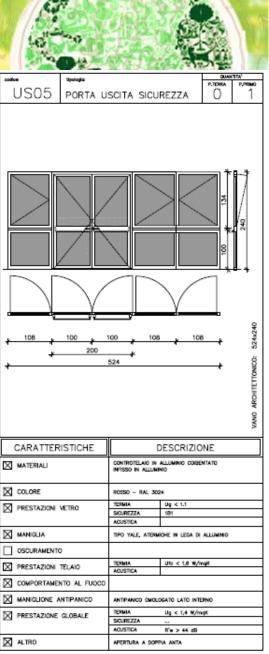




Examples

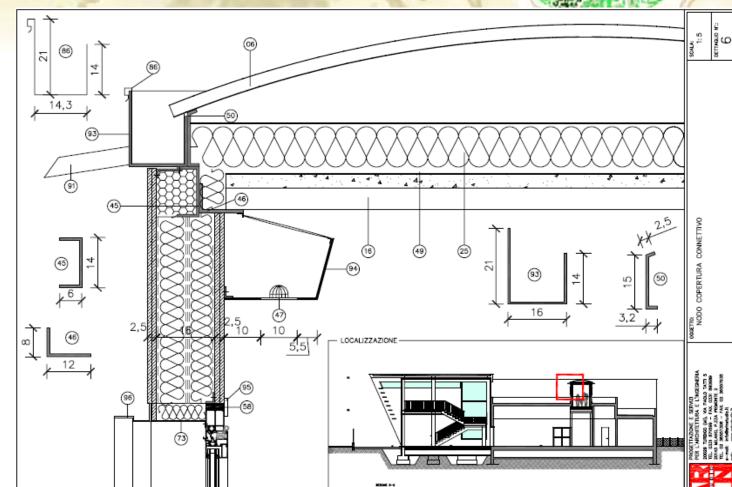
Enlargment – Arsago Seprio – Prim

Doors and windows abacus


PORTA USCITA SICUREZZA

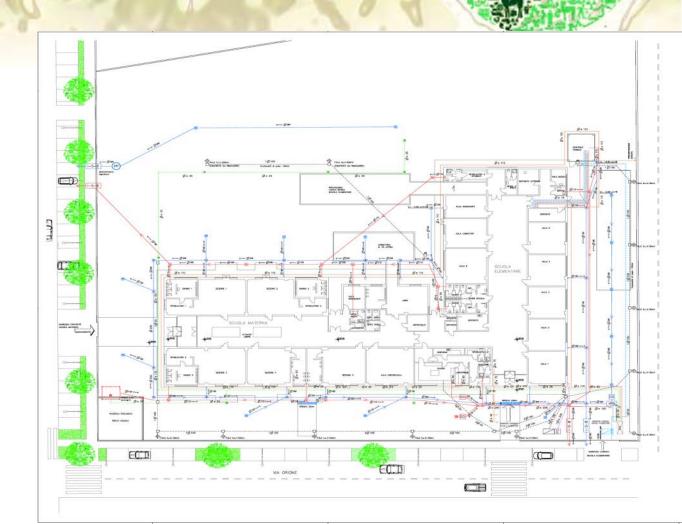
US04

Thermal performance Safety performance-


	CARATTERISTICHE		DESCRIZIONE		
_	WATERIALI	CONTROTELAC IN ALLUMNIC COBENTATO INFISSO IN ALLUMNIO			
		R0550 - RAL 3024			
Ī	PRESTAZIONI VETRO	TERMIA	Ug < 1.1		
	M LUESINEOUS SEINO	SICUREZZA	181		
		ACUSTICA			
	MANIGLIA	TIPO YALE, ATERMICHE IN LEGA DI ALLIAMNO			
	OSCURAMENTO				
1	PRESTAZIONI TELAIO	TERMIA	Ufe < 1,6 W/mqK		
	Z PRESTAZIONI IELAIO	ACUSTICA			
	COMPORTAMENTO AL FUOCO				
	MANIGLIONE ANTIPANICO	ANTIPANICO OMOLOGATO LATO INTERNO			
	PRESTAZIONE GLOBALE	TERMIA	Ug < 1,4 W/mgK		
	M LUESINGUE GEORGE	SOUREZZA			
		ACUSTICA			
	ALTRO	APERTURA A DOPPIA ANTA			

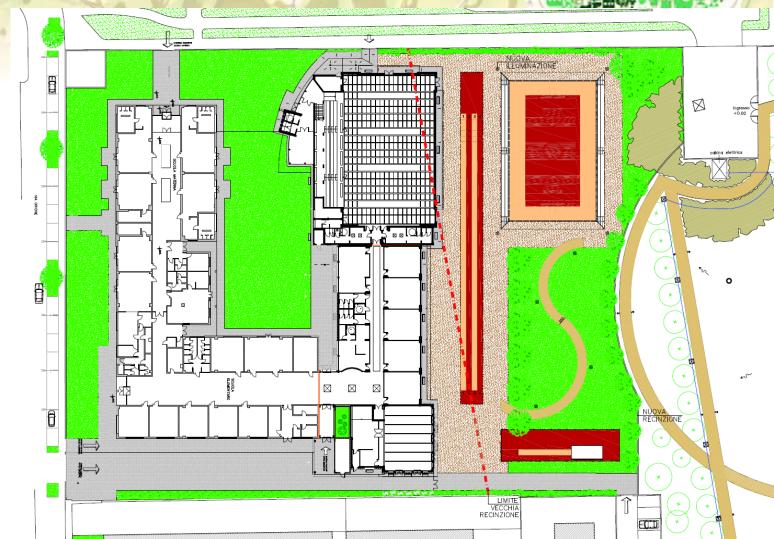
Enlargment – Arsago Seprio – Primary school

Detail of the roof of the corridor



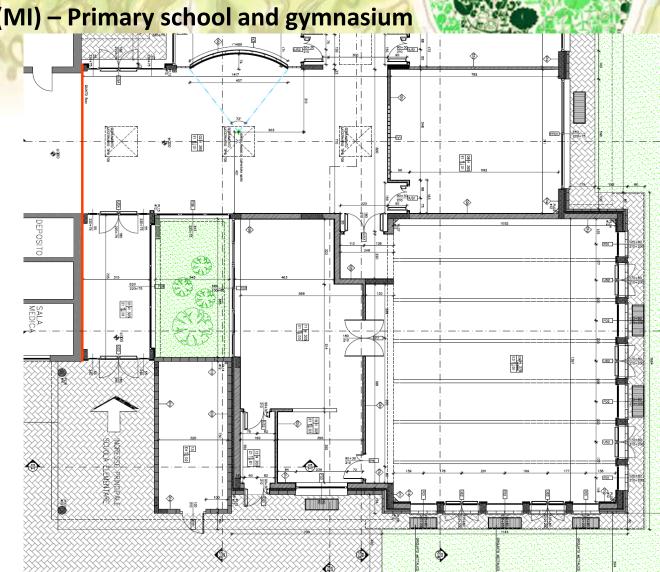
New building – Mediglia (MI) – Primary school and gymnasium

Underground utilities


Influence on artesian well

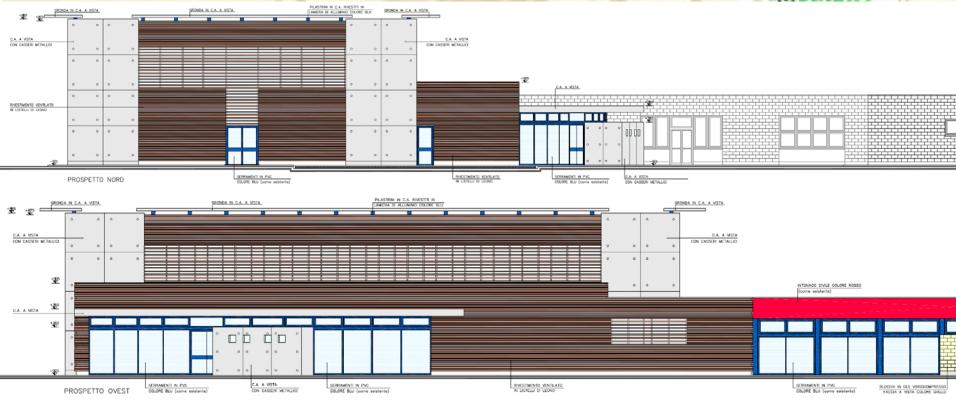
New building - Mediglia (MI) - Primary school and gymnasium

New gymnasyum New dining hall New laboratories New offices Basketball court

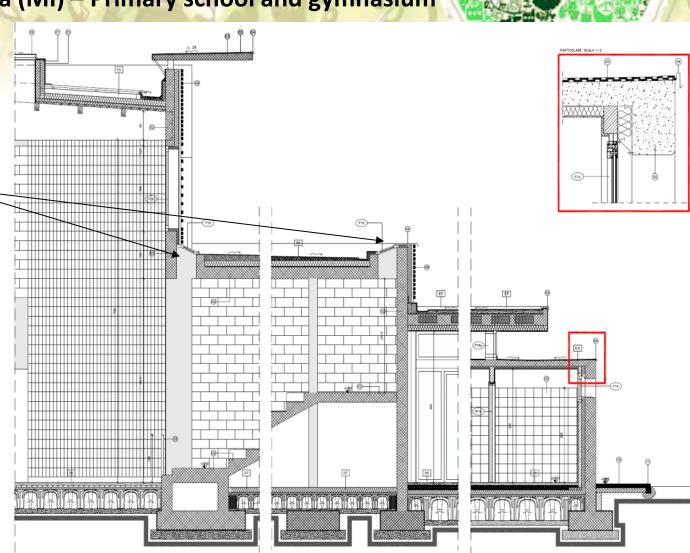


New building - Mediglia (MI) - Primary school and gymnasium

Light well


Entrance as a filter from Outside to inside

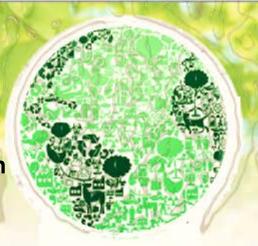
New building - Mediglia (MI) - Primary school and gymnasium



New building - Mediglia (MI) - Primary school and gymnasium

Relationship between different roof

Detail of skylight for the gallery



Examples

New building – Mediglia (MI) – Primary school and gymnasium

Entrance

Anti schock material Inner court

Examples

New building - Mediglia (MI) - Primary school and gymnasium

Classroom

Shading system on east side

Tilt windows

What type of glass?

New building - Mediglia (MI) - Primary school and gymnasium

Lighting – Natural Ventilation

Clerestory windows

Skylight

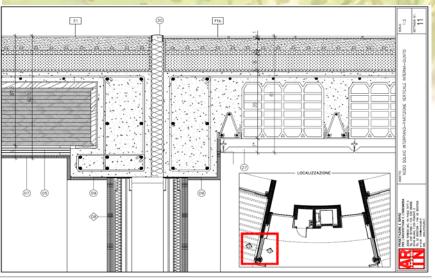
Cla

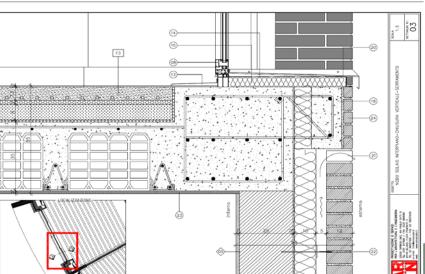
New building – Mediglia (MI) – Primary school and gymnasium

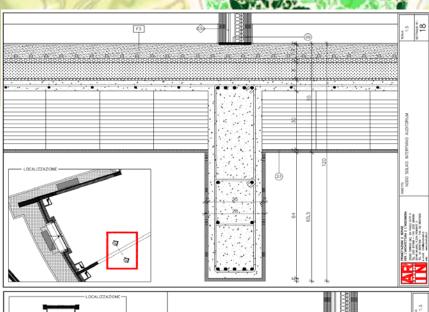
Gymnasium

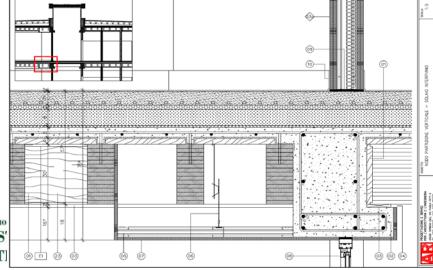
Glulam beam

Examples


New building - Bolano - Infant and Primary school


Do you remember?





New building - Bolano - Infant and Primary school

New building - Bolano - Infant and Primary school ITACA data sheets

TIACA data silect	.5	10)
CRITERIO 32.3	alar	alah	
Permeabilità del suolo			

Permeabilità del suolo	
AREA DI VALUTAZIONE	CATEGORIA
3. Carichi Ambientali	3.2 Acque reflue
ESIGENZA	PESO DEL CRITERIO
Mariana Piatana in Piatana da Arad	20%

naturali d'accua

Quantità di superfici esterne permeabili e rispetto al totale delle supertici esterne di pertinenza dell'edificio

CHAILE			
%			

SCALA DI PRESTAZIONE		
	%	PUNTI
NEGATI//O		-1
SUFFICIENTE	0%	0
BUONO	60%	3
OTTMO	100 %	- 6

- La uerifica del crite do comporta la segue irte procedura:
- 1, calcolare fale a compte salua de le superfici esterne di pertinenza dell'edificio: An 2. calcolare fare a de le superifoi este nie perme abili di pertinenza delle dificio come somma delle superifoi molto licate per la retattua % di
- 3, calcolare taipe cen trale di superficie sterne pe mieabili rispetto al fotale;

4. conflorto del ualo e calco lato con il ben cimank della scala di prestazzone e attribuzione del punteggio					
DATI DI INPUT	%permeabilità	VALORE	UNITA' DIMISURA		
II A - are a compless ua delle superfici di pertinenza dell'edificio		1910,5	m²		
12 B - are a de le superficie ste nie permeabili dipertheuza de l'edificio		1166	m²		
D.1 Tipo bg Bidella paulmentazbne edestensbne.			m²		
13.2 Tipo bg Bidella paulmentazbne edestensbne.			m²		
13.3 Tipo bg bidelta paulmentazbne edestensbne.			m²		
D.a Tipo big ta de la paulmentazzone e destensione.			m²		
DOCUMENTAZIONE		NOME D	D CUM ENTO		
D1 Pian imetria generale sistemazioni esterne.		Pr	. A00		
D2 Strattgrafte didettaglio delle paulmentazioni este ne .		Pr Pr	. A40		
D3 Desorzione de le ua listazioni generali condotte.					
DENICHMA DIZING					

luaiori dibencimant sono espressi in % e rappresentano il rapporto tra ta quantità di superficieste ne di pertinenza permeabili rispetto alla tota ità delle superficiesterne di pertinenza del progetto.

Libe to D: Il libe to ze ro comb ponde alfassen za di superfici esterne di pertinenza dell'ed l'bio permeabili.

Liue lo S: Il liue lo cinque corrisponde alla totale permeabilità delle superfici di pertinenza de l'edificio di progetto.

VALORE INDICATORE DI PRESTA ZIONE 61,03	96
PUNTEGGIO DEL SINGOLO CRITERIO	3,00
RIFERIMENTILEGISLATIVI	
- RIFERIMENT I NORMATIVI	
-	

CRITERIO 2.2.1	alah	2181	PRIVALG
Energia termica per A CS			
AREA DI VALUTAZIONE	CATEGORIA		
2. Consumo di risorse	2.2 Energia da fonti rinnovabili		
ESIGENZA	PESO DEL CRITERI	0	
hooraggiare l'uso di energia prodotta da fonti rinnovabili (sola re termico) per la produzione di ACS	50%		

FSt - fattore di copiertura solare: % del fabbisogno stimato di energia termica per la produzione di ACS coperta da fonti rinnovabili (solare termico), parametrizzata in funzione

del numero di piani

SCA LA DI PRESTAZIONE				
	in centro storico	<= 4 piani	> 4 piani	
	%	%	%	P UNTI
NEGATI//O	<20	<50	<40	-1
SUFFICIENTE	20	50	40	0
BUONO	38	62	52	3
OTTMO	50	70	80	E

La ue iffica de l'oriterio comporta la seguente procedura:

- 1, calco lo de l'abbillognio standard di ACS in accordo con la procedir a descritta ne la serie UNITS 1 1300 2008
- 2. calco lo de lico atributo di energia so lare te milica prodotta dall'impianto in relazione alle scelte progetti alle costruttue della triema stesso: 3. quan thicazione della % totale dienergia sola re termica calcolata suitota le del consumiistm atiper la produzione di ACS; é necessaria una parametrizzazione in funzione del numero dipianie di unità abitattue

4. controuto de luaio re calco lato con liben chima rk della scalla di prestazione e attribuzione del punteggio

		UNITA' DI MISURA
11 Compitare Strume ato di calcolo 2.2.1		
12 Fattore di cope itura so bre	68,15	%
DOCUMENTA ZIONE	NOME	OCUMENTO
D1 Streme to di calco lo 22.1	A	ssente
D2 Progetto dell'implanto solare te milco	Solare primaria	(KLOBEN SOLAR)

Tenendo conto de lla limitata superficie disponibile di fetto sugliedificim utto tano, per l'applicazione del sistem i so tari, la scata prestaziona è é stata duplicata differenziando i benchmark zero e chique per edifici interioria quattro plantati e uquallo superioria quattro plantati. Libe to Diccorrisponde all uatore mili mo attivalmente indicato da le uigenti leggi per la percentra è di copertira del tabbis ogno richi esto per il acqua

Liue lo Sicontitipo i de al caso di milgilo e pratica costruttua applicabile considerando a ilche lo spazio necessario a liapplicazione del panne il notocuo Italici. Per quanto rguarda gilled Microcom postida quattro ptanilo pili, il limite é stato ribiotto per ouuta e al problem i didimensioni de le

VALORE INDICATORE DI PRESTA ZIONE	68,15	%
PUNTEGGIO DEL SINGOLO CRITERIO		4

New building – Bolano – Infant and Primary school Show here in 2011. 4.2 million€

New building – Bolano – Infant and Primary school Interiors – corridor: insulation phase and actually

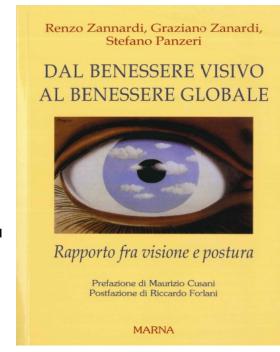
New building - Bolano - Infant and Primary school

Details - Rockwool insulation and anchors for bricks

New building – Bolano – Infant and Primary school
Protection of thermal bridge

Contato:

Eng. Marco Cagelli


Diretor Geral – AR.IN. Studio

Tel.: (39) 0331-871699 / (31) 9981-3261

marco.cagelli@arinstudio.it - marco.cagelli@ab4b.eu

www.arinstudio.it - www.ab4b.eu

Paolo Tatti, 5 – 20029 Turbigo (MI) - ITALY

